Simultaneous QTL detection and genomic breeding value estimation using high density SNP chips
نویسندگان
چکیده
BACKGROUND The simulated dataset of the 13th QTL-MAS workshop was analysed to i) detect QTL and ii) predict breeding values for animals without phenotypic information. Several parameterisations considering all SNP simultaneously were applied using Gibbs sampling. RESULTS Fourteen QTL were detected at the different time points. Correlations between estimated breeding values were high between models, except when the model was used that assumed that all SNP effects came from one distribution. The model that used the selected 14 SNP found associated with QTL, gave close to unity correlations with the full parameterisations. CONCLUSIONS Nine out of 18 QTL were detected, however the six QTL for inflection point were missed. Models for genomic selection were indicated to be fairly robust, e.g. with respect to accuracy of estimated breeding values. Still, it is worthwhile to investigate the number QTL underlying the quantitative traits, before choosing the model used for genomic selection.
منابع مشابه
Effects of Marker Density, Number of Quantitative Trait Loci and Heritability of Trait on Genomic Selection Accuracy
The success of genomic selection mainly depends on the extent of linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), number of QTL and heritability (h2) of the traits. The extent of LD depends on the genetic structure of the population and marker density. This study was conducted to determine the effects of marker density, level of heritability, number of QTL, and to ...
متن کاملThe Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods
Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...
متن کاملApplying different genomic evaluation approaches on QTLMAS2010 dataset
BACKGROUND With the availability of high throughput genotyping, genomic selection, the evaluation of animals based on dense SNP genotyping, is receiving more and more attention. Several statistical methods have been suggested for genomic selection. Compared to traditional selection, genomic selection can be more accurate which can lead to higher efficiency in terms of time and cost. Herein we a...
متن کاملGenomic selection.
Genomic selection is a form of marker-assisted selection in which genetic markers covering the whole genome are used so that all quantitative trait loci (QTL) are in linkage disequilibrium with at least one marker. This approach has become feasible thanks to the large number of single nucleotide polymorphisms (SNP) discovered by genome sequencing and new methods to efficiently genotype large nu...
متن کاملPhysiology and Endocrinology Symposium: How single nucleotide polymorphism chips will advance our knowledge of factors controlling puberty and aid in selecting replacement beef females.
The promise of genomic selection is accurate prediction of the genetic potential of animals from their genotypes. Simple DNA tests might replace low-accuracy predictions for expensive or lowly heritable measures of puberty and fertility based on performance and pedigree. Knowing with some certainty which DNA variants (e.g., SNP) affect puberty and fertility is the best way to fulfill the promis...
متن کامل